If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6z2 + 43z + 7 * 7z2 + 4z + -6 = 0 Multiply 7 * 7 6z2 + 43z + 49z2 + 4z + -6 = 0 Reorder the terms: -6 + 43z + 4z + 6z2 + 49z2 = 0 Combine like terms: 43z + 4z = 47z -6 + 47z + 6z2 + 49z2 = 0 Combine like terms: 6z2 + 49z2 = 55z2 -6 + 47z + 55z2 = 0 Solving -6 + 47z + 55z2 = 0 Solving for variable 'z'. Begin completing the square. Divide all terms by 55 the coefficient of the squared term: Divide each side by '55'. -0.1090909091 + 0.8545454545z + z2 = 0 Move the constant term to the right: Add '0.1090909091' to each side of the equation. -0.1090909091 + 0.8545454545z + 0.1090909091 + z2 = 0 + 0.1090909091 Reorder the terms: -0.1090909091 + 0.1090909091 + 0.8545454545z + z2 = 0 + 0.1090909091 Combine like terms: -0.1090909091 + 0.1090909091 = 0.0000000000 0.0000000000 + 0.8545454545z + z2 = 0 + 0.1090909091 0.8545454545z + z2 = 0 + 0.1090909091 Combine like terms: 0 + 0.1090909091 = 0.1090909091 0.8545454545z + z2 = 0.1090909091 The z term is 0.8545454545z. Take half its coefficient (0.4272727273). Square it (0.1825619835) and add it to both sides. Add '0.1825619835' to each side of the equation. 0.8545454545z + 0.1825619835 + z2 = 0.1090909091 + 0.1825619835 Reorder the terms: 0.1825619835 + 0.8545454545z + z2 = 0.1090909091 + 0.1825619835 Combine like terms: 0.1090909091 + 0.1825619835 = 0.2916528926 0.1825619835 + 0.8545454545z + z2 = 0.2916528926 Factor a perfect square on the left side: (z + 0.4272727273)(z + 0.4272727273) = 0.2916528926 Calculate the square root of the right side: 0.540048972 Break this problem into two subproblems by setting (z + 0.4272727273) equal to 0.540048972 and -0.540048972.Subproblem 1
z + 0.4272727273 = 0.540048972 Simplifying z + 0.4272727273 = 0.540048972 Reorder the terms: 0.4272727273 + z = 0.540048972 Solving 0.4272727273 + z = 0.540048972 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.4272727273' to each side of the equation. 0.4272727273 + -0.4272727273 + z = 0.540048972 + -0.4272727273 Combine like terms: 0.4272727273 + -0.4272727273 = 0.0000000000 0.0000000000 + z = 0.540048972 + -0.4272727273 z = 0.540048972 + -0.4272727273 Combine like terms: 0.540048972 + -0.4272727273 = 0.1127762447 z = 0.1127762447 Simplifying z = 0.1127762447Subproblem 2
z + 0.4272727273 = -0.540048972 Simplifying z + 0.4272727273 = -0.540048972 Reorder the terms: 0.4272727273 + z = -0.540048972 Solving 0.4272727273 + z = -0.540048972 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.4272727273' to each side of the equation. 0.4272727273 + -0.4272727273 + z = -0.540048972 + -0.4272727273 Combine like terms: 0.4272727273 + -0.4272727273 = 0.0000000000 0.0000000000 + z = -0.540048972 + -0.4272727273 z = -0.540048972 + -0.4272727273 Combine like terms: -0.540048972 + -0.4272727273 = -0.9673216993 z = -0.9673216993 Simplifying z = -0.9673216993Solution
The solution to the problem is based on the solutions from the subproblems. z = {0.1127762447, -0.9673216993}
| 27=2m+7-m+3-2m-1 | | 6b-0.4=7b | | -18y+9y= | | 10-8x=90-36x | | (5v+6)(4-v)=0 | | .25x+.1x=9.8 | | 3[(1)]=x | | 2p+22p^2-p= | | 3[(1)]= | | x^2+31x+5=0 | | Y=-5x+18 | | 24p-28q= | | .25y-10=.1y | | 17+5/15=-4 | | .4x-4=2.8+.2x | | (s/3)+11=16 | | 7+9+x=40 | | 1.12+1.15x=8.62 | | -4t^2+30t-12=0 | | 6-7m-20m^2=0 | | -16+51=-5(x+5) | | 1.12+1.12x=8.62 | | 5=4x-10 | | 8x^2+kx+k=0 | | (4z+1)(8-z)=0 | | 17x-5=11x-35 | | 22+4b=-2(1-6b) | | -0.7x+9.24=-0.5x+8.24 | | -0.7+9.24=-0.5+8.24 | | 3(2x-4)+5=15 | | 9=x/5-1 | | b-7=-4 |